

¹Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China; ²Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping 60174, Sweden;

³Wallenberg Initiative Materials Science for Sustainability, Department of Science and Technology, Linköping University, Norrköping 60174, Sweden;

⁴Department of Chemistry, University of Helsinki, Helsinki FI-00014, Finland;

⁵Department of Physics and Astronomy, Uppsala University, Uppsala SE-75120, Sweden and ⁶Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw PL-50370, Poland

*Corresponding authors. E-mails: glib.baryshnikov@liu.se; xuwei@tongji.edu.cn

[†]Equally contributed to this work.

Received 12 October 2025; Accepted 30 October 2025

CHEMISTRY

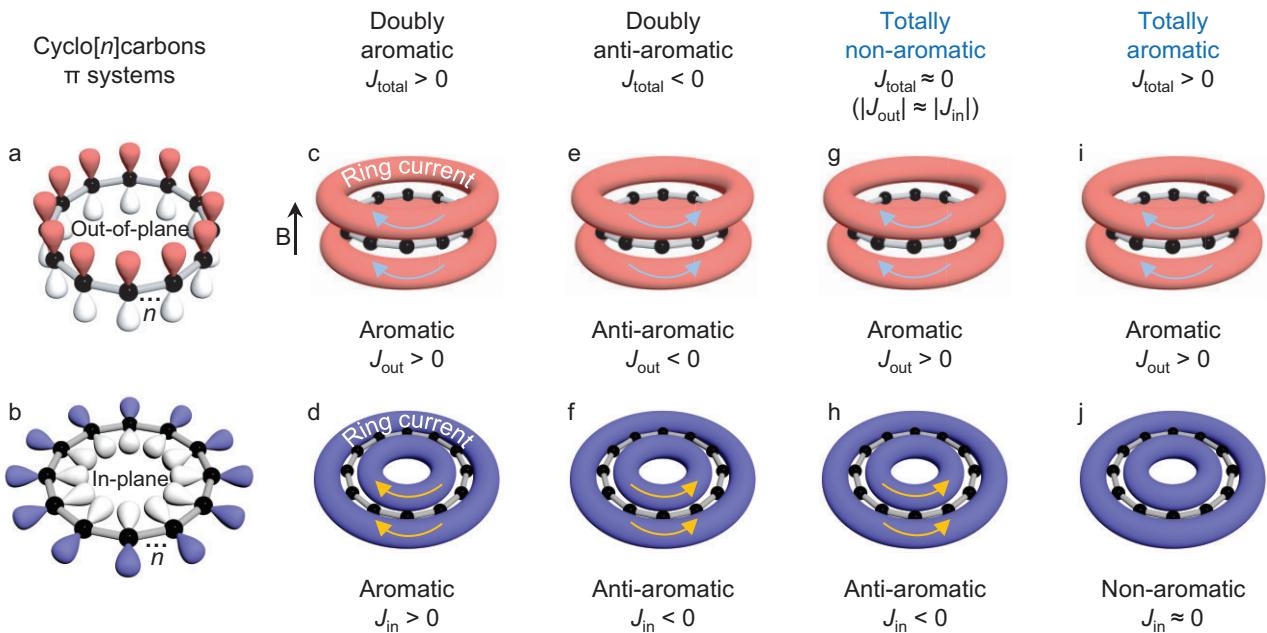
Special Topic: Molecular Quantum Materials

Tuning aromaticity of cyclocarbons by heteroatom doping: C₁₂S and C₁₂N

Luye Sun^{1,†}, Yuan Guo^{1,†}, Ihor Sahalianov^{2,3,†}, Zheng Zhou^{1,†}, Wei Zheng^{1,†}, Wenzhi Xiang¹, Yumeng Guo¹, Yuanhao Feng¹, Rashid Valiev⁴, Artem Kuklin⁵, Hans Ågren^{5,6}, Glib V. Baryshnikov^{2,3,*} and Wei Xu^{1,*}

ABSTRACT

Cyclo[n]carbons (C_n) have sparked substantial interest among experimentalists and theoreticians owing to their elusive geometric structures and unique aromaticity. Composed of two-coordinated sp-hybridized carbon atoms, C_n thus forms two perpendicular conjugated π -electron systems, i.e. out-of-plane and in-plane. Till now, on-surface generated cyclocarbons are either doubly aromatic or doubly anti-aromatic, as the number of electrons within out-of-plane and in-plane π systems was equal. Doping with heteroatoms allows one to create two π systems with different numbers of electrons, and to tune the aromaticity. Herein, we successfully generated two heteroatom-doped cyclocarbons, C₁₂S and C₁₂N, and characterized their chemical and electronic structures. Calculations show that C₁₂S exhibits an out-of-plane (14 e) aromatic and in-plane (12 e) anti-aromatic character, resulting in a total non-aromaticity. For C₁₂N, the out-of-plane (14 e) aromatic and in-plane (13 e) non-aromatic characters lead to total aromaticity. Doping with heteroatoms may open up the field of aromaticity engineering within cyclocarbons.


Keywords: molecular carbon allotrope, cyclocarbon, doubly aromatic, heteroatom doping, on-surface synthesis, atom manipulation

INTRODUCTION

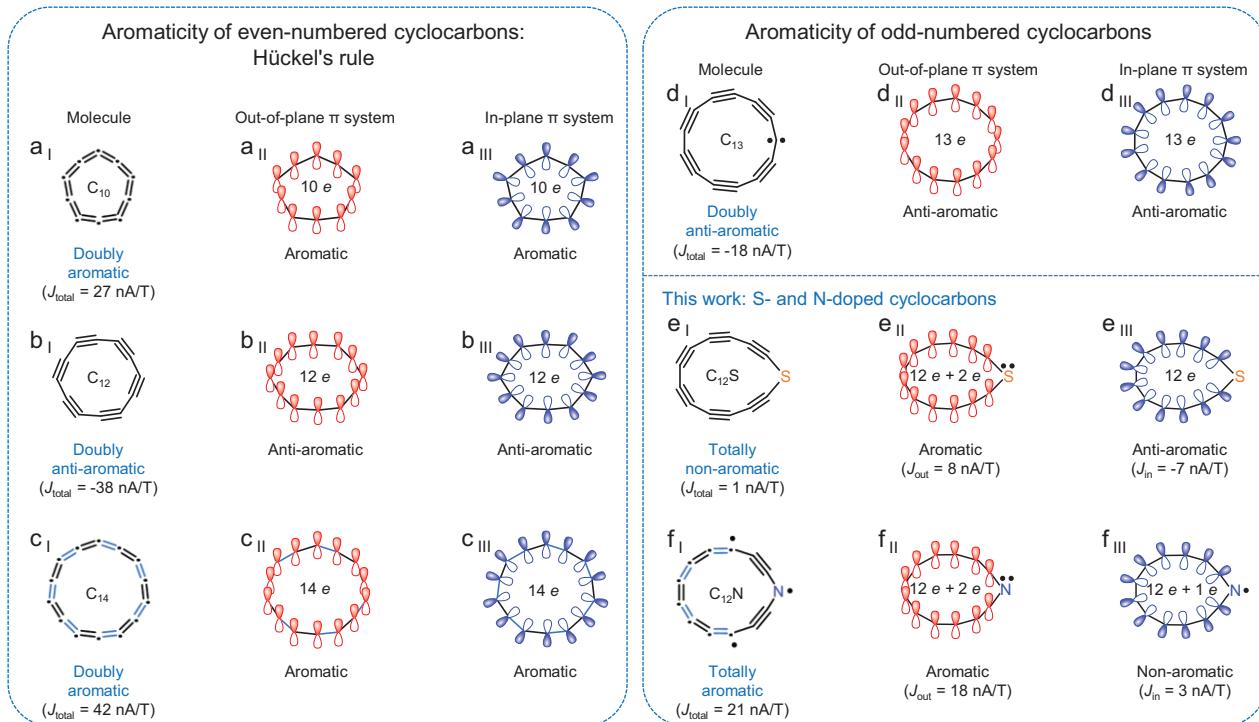
Cyclo[n]carbons (C_n), a family of molecular carbon allotropes, have attracted significant attention owing to their elusive geometric structures and unique aromaticity [1–17]. C_n possesses two perpendicular conjugated π -electron systems that are formed by the alternating triple and single bonds (or consecutive double bonds): one is in-plane and the other perpendicular to the molecular plane (i.e. out-of-plane) (Fig. 1a and b). As a natural consequence of their origin from sp-hybridized carbons, all such compounds made to date have had the same number of electrons in the two π systems. Thus, they were either doubly aromatic or doubly anti-aromatic. For example, C₆ [18], C₁₀ [19], C₁₄ [19], C₁₈ [20,21], and C₂₆ [22] are all doubly aromatic (Fig. 1c and d); C₁₂ [23], C₁₃ [22], C₁₆ [24],

and C₂₀ [23] are all doubly anti-aromatic (Fig. 1e and f).

Doping with heteroatoms opens the possibility of breaking this parity, because heteroatoms (i.e. S, N) have a lone pair in either the in-plane or out-of-plane system, but not both. Thus, exchanging a carbon atom or adding a heteroatom allows one to create two π systems with different numbers of electrons. Furthermore, it allows one to create systems with even numbers of electrons but odd numbers of atoms, or vice versa. Our calculations predict that S or N heteroatom doping into cyclocarbons (e.g. doubly anti-aromatic C₁₂) could significantly influence its geometric and electronic structures, and tune its aromaticity. Herein it is shown that C₁₂S exhibits out-of-plane aromatic and in-plane anti-aromatic characters, resulting

Figure 1. Two perpendicular π systems of cyclocarbons and their aromaticity. (a and b) Out-of-plane and in-plane π systems of cyclocarbons. (c and d) Doubly aromatic cyclocarbons with magnetically induced current $J_{\text{total}} > 0$ ($J_{\text{out}} > 0, J_{\text{in}} > 0$). (e and f) Doubly anti-aromatic cyclocarbons with $J_{\text{total}} < 0$ ($J_{\text{out}} < 0, J_{\text{in}} < 0$). (g and h) Totally non-aromatic cyclocarbons with $J_{\text{total}} \approx 0$ (e.g. $J_{\text{out}} > 0, J_{\text{in}} < 0$, and $|J_{\text{out}}| \approx |J_{\text{in}}|$). (i and j) Totally aromatic cyclocarbons with $J_{\text{total}} > 0$ (e.g. $J_{\text{out}} > 0, J_{\text{in}} \approx 0$). The external magnetic field B is perpendicular to the ring plane and points upward.

in a total non-aromaticity (Fig. 1g and h), which has not been reported for any cyclocarbons so far. For C_{12}N , the out-of-plane aromatic and in-plane non-aromatic characters lead to a total aromaticity (Fig. 1i and j), thus achieving a reversed aromaticity compared to C_{12} . It is therefore of utmost interest to experimentally generate such heteroatom-doped cyclocarbons.


The concept of aromaticity was introduced by Kekulé in 1865 [25], and nowadays, magnetic criteria of aromaticity are most widely used for molecular systems [16,22,26]. For the magnetically induced ring current J , diatropic current ($J > 0$) corresponds to aromatic character, while paratropic current ($J < 0$) corresponds to anti-aromatic one. Mathematically, we can represent the total magnetically induced current (J_{total}) of the system as a sum of the out-of-plane and in-plane currents (i.e. $J_{\text{out}} + J_{\text{in}}$) (cf. Fig. 1). As for even-numbered cyclocarbons shown in Fig. 2a to c (i.e. $\text{C}_{10}, \text{C}_{12}, \text{C}_{14}$), the out-of-plane and in-plane π systems both contain 10 e (14 e) for aromatic C_{10} (C_{14}) (Fig. 2a and c), with $J_{\text{total}} = 27 \text{ nA/T}$ ($J_{\text{total}} = 42 \text{ nA/T}$) [11]. For anti-aromatic C_{12} (Fig. 2b), both out-of-plane and in-plane π systems contain 12 e , with $J_{\text{total}} = -38 \text{ nA/T}$. As odd-numbered cyclocarbons, e.g. C_{13} (Fig. 2d), the out-of-plane and in-plane π systems both

contain 13 e , with $J_{\text{total}} = -18 \text{ nA/T}$, thus, C_{13} can be assigned as a doubly anti-aromatic cyclocarbon [22].

Herein, we focus on two heteroatom-doped cyclocarbons, i.e. S- and N-doped cyclocarbons. For C_{12}S (Fig. 2e), calculations indicate out-of-plane ($12 e$ (C) + 2 e (S), $J_{\text{out}} = 8 \text{ nA/T}$) aromatic and in-plane ($12 e$ (C), $J_{\text{in}} = -7 \text{ nA/T}$) anti-aromatic character, resulting in a total non-aromaticity ($J_{\text{total}} = 1 \text{ nA/T}$). For C_{12}N (Fig. 2f), the out-of-plane ($12 e$ (C) + 2 e (N), $J_{\text{out}} = 18 \text{ nA/T}$) aromatic and in-plane ($12 e$ (C) + 1 e (N), $J_{\text{in}} = 3 \text{ nA/T}$) non-aromatic characters lead to a total aromaticity ($J_{\text{total}} = 21 \text{ nA/T}$).

RESULTS AND DISCUSSION

Experimentally, we designed and synthesized two fully halogenated molecules (perchlorodibenzo[*b, d*]thiophene, $\text{C}_{12}\text{SCl}_8$, and perchloro-1H-cyclopenta[*b*]quinoline, $\text{C}_{12}\text{NCl}_9$) as the precursors for generating heteroatom-doped cyclocarbons, C_{12}S and C_{12}N , respectively. Through scanning tunneling microscopy (STM) tip-induced dehalogenation [27,28] and accompanied ring-opening reactions, C_{12}S (cf. Fig. 3a) and C_{12}N (cf. Fig. 4a) were successfully generated on the surface.

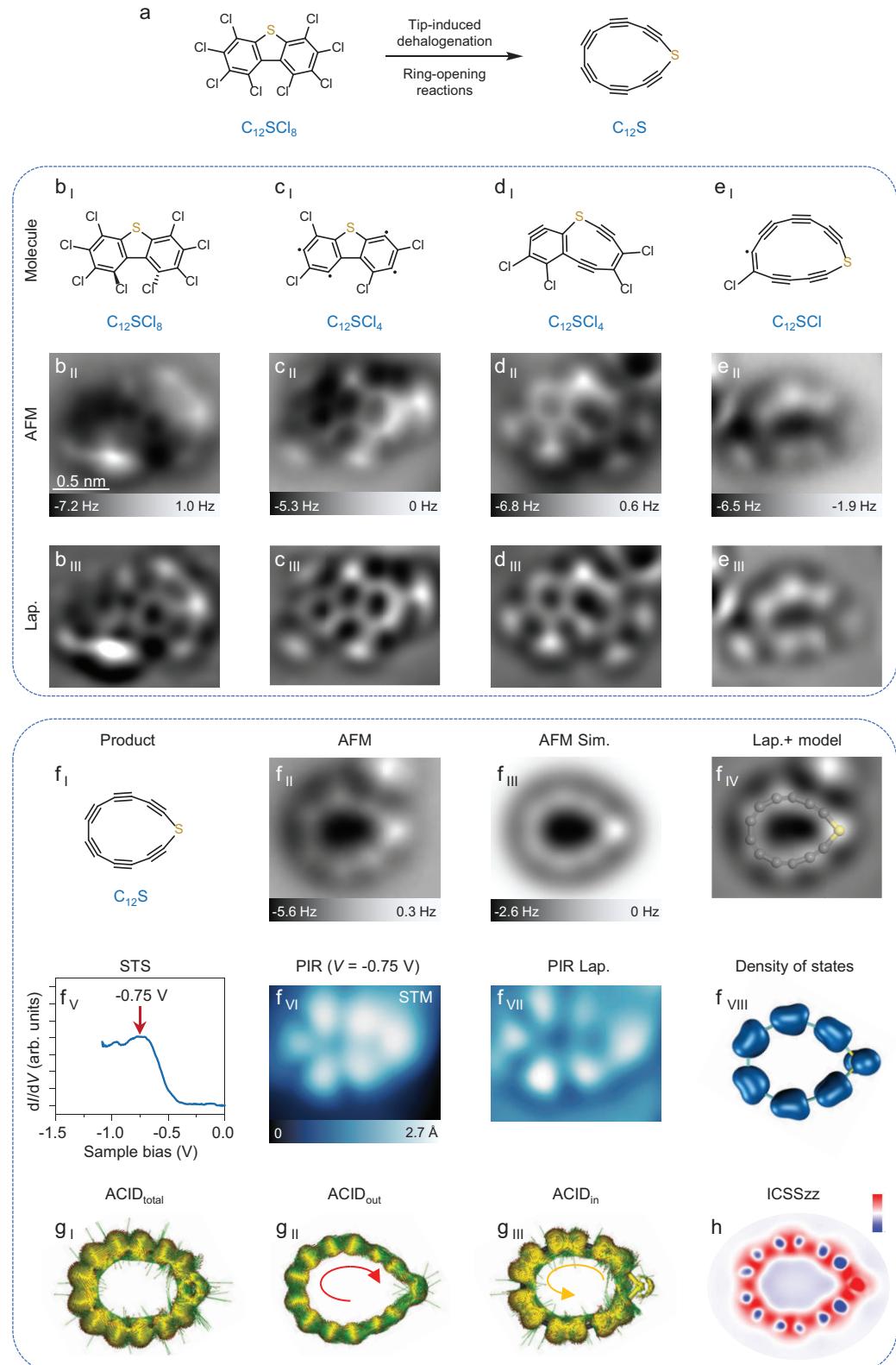


Figure 2. Aromaticity calculations of even- and odd-numbered cyclocarbons. (a_I to a_{III}, b_I to b_{III}, c_I to c_{III}) Aromaticity calculations of C₁₀, C₁₂, C₁₄. (d_I to d_{III}) Aromaticity calculations of C₁₃. (e_I to e_{III}, f_I to f_{III}) Aromaticity calculations of C₁₂S and C₁₂N.

To generate C₁₂S, C₁₂SCl₈ molecules were introduced on the cold sample held at ~ 6 K. All molecules were studied on the 1 monolayer (ML) NaCl/Au(111) surface at 4.7 K. Atomic force microscopy (AFM) images (Fig. 3b_{II}, b_{III}) acquired with a CO-terminated tip revealed the skeleton of the precursor (Fig. 3b_I). To trigger dehalogenation reactions, the tip was initially positioned on a single C₁₂SCl₈ molecule, and retracted by 4–6 Å from a set point (typically $I = 5$ pA, $V = 0.3$ V), after that, ~ 4 –4.5 V pulses were applied on the molecule with currents on the order of a few pA. Normally, several Cl atoms were removed, leading to the formation of typical intermediates shown in Fig. 3c and d and Fig. S2. In some intermediates the first-step retro-Bergman ring-opening reaction [19,23,29–31] has occurred, leading to the formation of a 9-membered ring containing a S atom (Fig. 3d and Fig. S2b). Subsequent voltage pulses can induce further dehalogenation and accompanied second-step retro-Bergman ring-opening reaction, leading to the formation of intermediates, e.g. C₁₂SCl (Fig. 3e). AFM imaging shows a 13-membered ring with five carbon-carbon triple bonds and one Cl atom attached. Further voltage pulses could induce complete dehalogenation of intermediates (e.g. Fig. 3e), resulting in the formation of the final

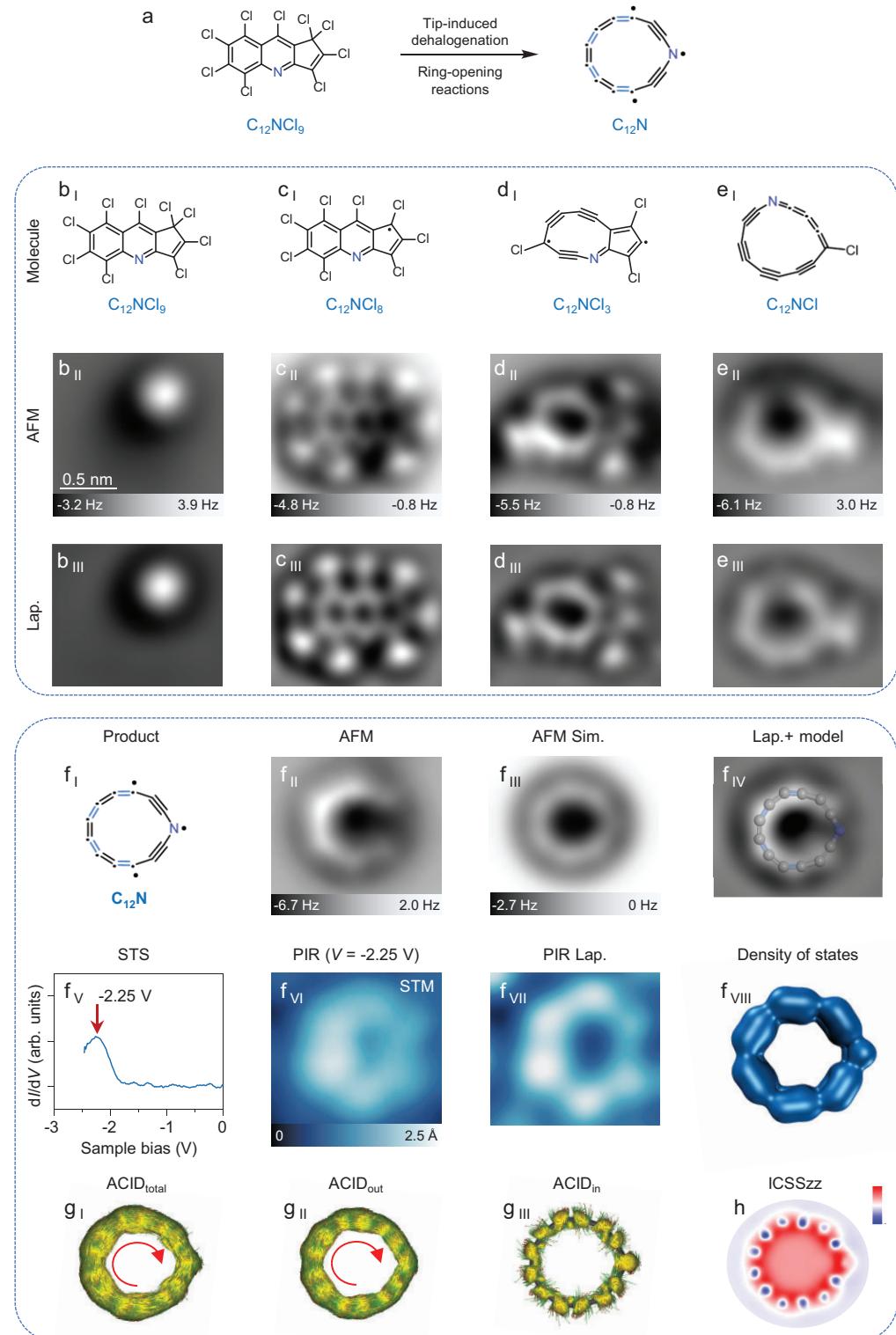
product C₁₂S (cf. the optimized structure shown in Fig. 3f_I, Figs S3 and S4a). AFM images (Fig. 3f_{II}, f_{IV}) reveal six characteristic bright features corresponding to carbon-carbon triple bonds and a pronounced contrast at the S atom site, in consistence with AFM simulation (Fig. 3f_{III}). In the close tip-sample distance (Fig. S5), bright thin lines appear between triple bonds (obviously different from the cumulenic line features) [18,19], which should originate from the tip-tilting effect [32].

Moreover, we have successfully measured the differential conductance as a function of voltage, dI/dV , of a C₁₂S (Fig. 3f_V). The dI/dV spectrum acquired over the C₁₂S ring shows a prominent peak at ~ -0.75 V. STM images (Fig. 3f_{VI}, f_{VII}) obtained at this bias voltage correspond to the PIR state, showing characteristic lobes similar to the ones of C₂₀ [23]. This state could result from the superposition of the densities of the nearly energy degenerated highest occupied molecular orbitals (HOMOs) (Fig. 3f_{VIII} and Fig. S6). It is considered that the peak at the PIR dominantly relates to the out-of-plane orbitals [22]. In addition, due to the energy broadening of the ionic resonances on NaCl (~ 0.3 V) [33], nearly degenerated orbitals could not be resolved as separate peaks in the dI/dV spectrum.

Figure 3. (Continued) intermediates. (f_I to f_{IV}) Molecular structure, AFM image, AFM simulation, Laplace-filtered AFM image with a superimposed model of product (C₁₂S). (f_V) Scanning tunneling spectroscopy (STS) of C₁₂S acquired with a CO-terminated tip. The differential conductance (dI/dV) signal acquired on the C₁₂S shows a peak that can be attributed to the positive ion resonance (PIR) state. (f_{VI}) STM image at PIR ($V = -0.75$ V, $I = 2$ pA). (f_{VII}) Laplace-filtered STM image. (f_{VIII}) Superposition of the densities of the nearly energy degenerated highest occupied molecular orbitals (HOMOs). (g_I to g_{III}) Total, out-of-plane and in-plane ACID plots for C₁₂S. (h) ICSS_{zz} plot for C₁₂S. Color bar: from -60 to 60 . AFM tip offsets Δz : $+0.3$ Å, $+0.2$ Å, 0 Å, -0.4 Å, -1.0 Å for b_{II} to f_{II}. Reference set points of Δz : $I = 5$ pA, $V = 0.3$ V for b_{II}, $I = 4$ pA, $V = 0.3$ V for c_{II} to e_{II}, $I = 0.5$ pA, $V = 0.3$ V for f_{II}. The scale bar in (b_{II}) applies to all experimental images. The external magnetic field is perpendicular to the ring plane and points upward.

C₁₂NCl₉ molecules [34] (Fig. 4b_I to b_{III}) were introduced onto the surface to generate C₁₂N. Similarly, applied voltage pulses (~ 4 – 4.5 V) can remove one or more Cl atoms, leading to the formation of typical intermediates (e.g. Fig. 4c–e). Not only the 6–6–5 skeleton, but more importantly the larger 10- and 13-membered rings of intermediates were revealed by AFM images, indicating the occurrence of first-step and second-step ring-opening reactions. Subsequent voltage pulses could induce complete dehalogenation of intermediates (e.g. Fig. 4e), resulting in the formation of the final product C₁₂N (cf. the optimized structure shown in Fig. 4f_I, Figs S4b and S7). For C₁₂N, the N atom site in AFM images (Fig. 4f_{II}, f_{IV}) has a weaker contrast compared to carbon–carbon bonds [35]. AFM images at different tip heights (Fig. 4f_{II} and Fig. S8) show two characteristic bright features (assigned to triple bonds) near to the N site and uniform line features (assigned to the cumulenic moiety) within C₁₂N, in accordance with the AFM simulation (Fig. 4f_{III}).

Moreover, the dI/dV spectrum (Fig. 4f_V) acquired over the C₁₂N ring shows a prominent peak at ~ -2.25 V. STM images (Fig. 4f_{VI}, f_{VII}) obtained at this bias voltage correspond to the PIR state, showing a nearly delocalized state (i.e. no obvious lobes in comparison with C₁₂S) (Fig. 4f_{VIII} and Fig. S9). It is still challenging to measure the negative ion resonance (NIR) of C₁₂S and C₁₂N due to the high mobility of the ring.


Calculations for anisotropy of the induced current density (ACID) [36] were conducted to visualize the magnetically induced current of C₁₂S (Fig. 3g and Fig. S10). ACID_{out} (Fig. 3g_{II}) and ACID_{in} (Fig. 3g_{III}) plots indicate the presence of a diatropic current (indicated by red clockwise arrow) within the out-of-plane π system and paratropic current (indicated by yellow anti-clockwise arrow) within the in-plane π system, leading to a very small diatropic current in ACID_{total} (Fig. 3g_I). It is found that an in-plane paratropic current

is formed by avoiding the kink at the S atom, because the S atom could not provide the lone electron pair into the conjugation circuit inside the C₁₂S ring, thus only in-plane 12 electrons by 12 carbon atoms are involved in the paratropic current. Iso-chemical shielding surface (ICSS_{zz}) [37] plots (Fig. 3h and Fig. S11) further confirm the presence of diatropic out-of-plane and paratropic in-plane currents.

For C₁₂N, ACID_{out} (Fig. 4g_{II}) and ACID_{in} (Fig. 4g_{III}) plots indicate the presence of a large diatropic current (indicated by red clockwise arrow) within the out-of-plane π system and very small diatropic current within the in-plane π system, leading to a diatropic current (indicated by red clockwise arrow) in ACID_{total} (Fig. 4g_I and Fig. S12). Compared with C₁₂S, the N atom provides only one electron into the in-plane conjugation circuit of the C₁₂N ring, resulting in a 13π -electron very weak aromatic system, while the out-of-plane 14π -electron aromatic system provides the dominant diatropic contribution to the total current. Moreover, the ICSS_{zz} plots only show a diatropic contribution (Fig. 4h and Fig. S13). The results of the aromaticity calculations of C₁₂S and C₁₂N are in consistence with the geometries and electronic state revealed by AFM and STM imaging (Figs 3f and 4f). Specifically, compared with the non-aromatic C₁₂S, aromatic C₁₂N exhibits reduced bond-length alternations and more delocalized PIR states.

CONCLUSION

In conclusion, we have successfully generated two heteroatom S- and N-doped cyclocarbons, i.e. C₁₂S and C₁₂N, via the on-surface synthesis method. The doped heteroatoms result in different numbers of electrons within the out-of-plane and in-plane conjugated π systems, and tune the aromaticity. Such a strategy of introducing heteroatoms may open up the field of aromaticity engineering within cyclocarbons.

Figure 4. On-surface synthesis of $C_{12}N$ and its aromaticity calculations. (a) Reaction scheme for the formation of $C_{12}N$ by dehalogenation and ring-opening reactions. (b₁ to b_{III}, c₁ to c_{III}, d₁ to d_{III}, e₁ to e_{III}) Molecular structures, atomic force microscopy (AFM) images, and Laplace-filtered AFM images of precursor and typical intermediates. (f₁ to f_{IV}) Molecular structure, AFM image, AFM simulation, Laplace-filtered AFM image with a superimposed model of product ($C_{12}N$). (f_V) Scanning tunneling spectroscopy (STS) of $C_{12}N$ acquired with a CO-terminated tip. The dI/dV signal acquired on the $C_{12}N$ shows a peak that can be attributed to the PIR state. (f_{VI}) STM image at PIR ($V = -2.25$ V, $I = 2$ pA). (f_{VII}) Laplace-filtered STM image. (f_{VIII}) Superposition of the densities of the nearly energy degenerated highest

Figure 4. (Continued) occupied molecular orbitals (HOMOs). (g₁ to g_{III}) Total, out-of-plane and in-plane ACID plots for C₁₂N. (h) ICSSzz plot for C₁₂N. Color bar: from −100 to 100. AFM tip offsets Δz: 0 Å, −1.4 Å, −1.4 Å, −1.3 Å, −1.5 Å for b_{||} to f_{||}. Reference set points of Δz: I = 0.5 pA, V = 0.3 V for b_{||} to f_{||}. The scale bar in (b_{||}) applies to all experimental images. The external magnetic field is perpendicular to the ring plane and points upward.

SUPPLEMENTARY DATA

Supplementary data are available at [NSR](#) online.

FUNDING

This work was supported by the National Natural Science Foundation of China (22125203 and 22402149), the National Key R&D Program of China (2023YFE0101900), the Ministry of Science and Technology of the People's Republic of China, and the Shanghai Science and Technology Program (24ZR1470000). This work was also partially supported by the National Academic Infrastructure for Supercomputing in Sweden (NAISS 2025/5-140, 2024/5-552) at the National Supercomputer Centre of Linköping University (Sweden) and PDC Dardel partially funded by the Swedish Research Council (2022-06 725), the Wallenberg Initiative Materials Science for Sustainability (WISE) funded by the Knut and Alice Wallenberg Foundation, the Swedish Research Council (2024-05 286), Swedish Government Strategic Research Area in Materials Science on Advanced Functional Materials at Linköping University (Faculty grant SFO-Mat-LiU no. 2009-00 971) funded by the European Union (ERC, LUMOR, 101077 649). Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them. R.V. thanks the Academy of Finland through Projects 346369.

AUTHOR CONTRIBUTIONS

W.X. conceived the research. L.S., Y.G. and W.X. performed the STM/AFM experiments. Z.Z., W.Z., Y.G. and Y.F. synthesized the C₁₂SCl₈ and C₁₂NCl₉ molecules. I.S., R.V., A.K., H.Å. and G.B. carried out the calculations. All authors contributed to writing and discussing the manuscript.

Conflict of interest statement. None declared.

REFERENCES

1. Parent DC and McElvany SW. Investigations of small carbon cluster-ion structures by reactions with hydrogen cyanide. *J Am Chem Soc* 1989; **111**: 2393–401.
2. Van Orden A and Saykally RJ. Small carbon clusters: spectroscopy, structure, and energetics. *Chem Rev* 1998; **98**: 2313–57.
3. Grutter M, Wyss M, Riaplov E et al. Electronic absorption spectra of linear C₆, C₈ and cyclic C₁₀, C₁₂ in neon matrices. *J Chem Phys* 1999; **111**: 7397–401.
4. Diederich F. Carbon scaffolding: building acetylenic all-carbon and carbon-rich compounds. *Nature* 1994; **369**: 199–207.
5. Pitzer KS and Clementi E. Large molecules in carbon vapor. *J Am Chem Soc* 1959; **81**: 4477–85.
6. Parasuk V, Almlöf J, Feyereisen MW. The [18] all-carbon molecule: cumulene or polyacetylene? *J Am Chem Soc* 1991; **113**: 1049–50.
7. Torelli T and Mitas L. Electron correlation in C_{4N+2} carbon rings: aromatic versus dimerized structures. *Phys Rev Lett* 2000; **85**: 1702–5.
8. Arulmozhiraja S and Ohno T. CCSD calculations on C₁₄, C₁₈, and C₂₂ carbon clusters. *J Chem Phys* 2008; **128**: 114301.
9. Remya K and Suresh CH. Carbon rings: a DFT study on geometry, aromaticity, intermolecular carbon-carbon interactions and stability. *RSC Adv* 2016; **6**: 44261–71.
10. Baryshnikov GV, Valiev RR, Kuklin AV et al. Cyclo[18]carbon: insight into electronic structure, aromaticity, and surface coupling. *J Phys Chem Lett* 2019; **10**: 6701–5.
11. Baryshnikov GV, Valiev RR, Nasibullin RT et al. Aromaticity of even-number cyclo[n]carbons (n = 6–100). *J Phys Chem A* 2020; **124**: 10849–55.
12. Charistos ND and Muñoz-Castro A. Induced magnetic field in sp-hybridized carbon rings: analysis of double aromaticity and antiaromaticity in cyclo[2N]carbon allotropes. *Phys Chem Chem Phys* 2020; **22**: 9240–9.
13. Brémond E, Pérez-Jiménez AJ, Adamo C et al. Stability of the polyynic form of C₁₈, C₂₂, C₂₆, and C₃₀ nanorings: a challenge tackled by range-separated double-hybrid density functionals. *Phys Chem Chem Phys* 2022; **24**: 4515–25.
14. Li M, Gao Z, Han Y et al. Potential molecular semiconductor devices: cyclo-C_n (n = 10 and 14) with higher stabilities and aromaticities than acknowledged cyclo-C₁₈. *Phys Chem Chem Phys* 2020; **22**: 4823–31.
15. Liu Z, Lu T, Chen Q. An sp-hybridized all-carboatomic ring, cyclo[18]carbon: bonding character, electron delocalization, and aromaticity. *Carbon* 2020; **165**: 468–75.
16. Baryshnikov GV, Valiev RR, Valiulina LI et al. Odd-number cyclo[n]carbons sustaining alternating aromaticity. *J Phys Chem A* 2022; **126**: 2445–52.
17. Fowler PW, Mizoguchi N, Bean DE et al. Double aromaticity and ring currents in all-carbon rings. *Chem Eur J* 2009; **15**: 6964–72.
18. Sun L, Guo Y, Xiang W et al. On-surface synthesis and characterization of linear and cyclic C₆. *Nat Synth* 2025; **4**: 940–6.
19. Sun L, Zheng W, Gao W et al. On-surface synthesis of aromatic cyclo[10]carbon and cyclo[14]carbon. *Nature* 2023; **623**: 972–6.
20. Kaiser K, Scriven LM, Schulz F et al. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. *Science* 2019; **365**: 1299–301.

21. Scriven LM, Kaiser K, Schulz F et al. Synthesis of cyclo[18]carbon via de-bromination of $C_{18}Br_6$. *J Am Chem Soc* 2020; **142**: 12921–4.
22. Albrecht F, Rončević I, Gao Y et al. The odd-number cyclo[13]carbon and its dimer, cyclo[26]carbon. *Science* 2024; **384**: 677–82.
23. Sun L, Zheng W, Kang F et al. On-surface synthesis and characterization of anti-aromatic cyclo[12]carbon and cyclo[20]carbon. *Nat Commun* 2024; **15**: 7649.
24. Gao Y, Albrecht F, Rončević I et al. On-surface synthesis of a doubly anti-aromatic carbon allotrope. *Nature* 2023; **623**: 977–81.
25. Kekulé A. Sur la constitution des substances aromatiques. *Bull Soc Chim Paris* 1865; **3**: 98–110.
26. Merino G, Solà M, Fernández I et al. Aromaticity: quo Vadis. *Chem Sci* 2023; **14**: 5569–76.
27. Pavliček N, Schuler B, Collazos S et al. On-surface generation and imaging of arynes by atomic force microscopy. *Nat Chem* 2015; **7**: 623–8.
28. Pavliček N, Gawel P, Kohn DR et al. Polyyne formation via skeletal rearrangement induced by atomic manipulation. *Nat Chem* 2018; **10**: 853–8.
29. Jones RR and Bergman RG. *p*-benzyne. Generation as an intermediate in a thermal isomerization reaction and trapping evidence for the 1,4-benzenediyl structure. *J Am Chem Soc* 1972; **94**: 660–1.
30. Schuler B, Fatayer S, Mohn F et al. Reversible Bergman cyclization by atomic manipulation. *Nat Chem* 2016; **8**: 220–4.
31. Albrecht F, Fatayer S, Pozo I et al. Selectivity in single-molecule reactions by tip-induced redox chemistry. *Science* 2022; **377**: 298–301.
32. Hapala P, Kichin G, Wagner C et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. *Phys Rev B* 2014; **90**: 085421.
33. Repp J, Meyer G, Stojković SM et al. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. *Phys Rev Lett* 2005; **94**: 026803.
34. Dobrowolski MA, Cyranski MK, Wrobel Z. Cyclic π -electron delocalization in non-planar linear acenes. *Phys Chem Chem Phys* 2016; **18**: 11813–20.
35. Kawai S, Nakatsuka S, Hatakeyama T et al. Multiple heteroatom substitution to graphene nanoribbon. *Sci Adv* 2018; **4**: eaar7181.
36. Geuenich D, Hess K, Köhler F et al. Anisotropy of the induced current density (ACID), a general method to quantify and visualize electronic delocalization. *Chem Rev* 2005; **105**: 3758–72.
37. Klod S and Kleinpeter E. *Ab initio* calculation of the anisotropy effect of multiple bonds and the ring current effect of arenes—Application in conformational and configurational analysis. *J Chem Soc, Perkin Trans 2* 2001; 1893–8.