RESEARCH ARTICLE

Tinterdisciplinary
Materials Research
Center, School of
Materials Science
and Engineering,
Tongji University,
Shanghai 201804,
China; 2Laboratory
of Organic
Electronics,
Department of
Science and
Technology,
Linkoping University,
Norrkoping 60174,
Sweden;
3Wallenberg
Initiative Materials
Science for
Sustainability,
Department of
Science and
Technology,
Linkoping University,
Norrkoping 60174,
Sweden;
4Department of
Chemistry, University
of Helsinki, Helsinki
FI-00014, Finland;
SDepartment of
Physics and
Astronomy, Uppsala
University, Uppsala
SE-75120, Sweden
and SFaculty of
Chemistry, Wroclaw
University of Science
and Technology,
Wroclaw PL-50370,
Poland

*Corresponding
authors. E-mails:
glib.baryshnikov@
liu.se;
xuwei@tongji.edu.cn

TEqually contributed
to this work.

Received 12 October
2025; Accepted 30
October 2025

CHEMISTRY

National Science Review

13: nwaf472, 2026
https://doi.org/10.1093/nsr/nwaf472
Advance access publication 31 October 2025

Special Topic: Molecular Quantum Materials
Tuning aromaticity of cyclocarbons by heteroatom

doping: C19S and C9N

Luye Sun'", Yuan Guo'f, Ihor Sahalianov?®f, Zheng Zhou'-f, Wei Zheng' 1,
Wenzhi Xiang', Yumeng Guo', Yuanhao Feng', Rashid Valiev*, Artem Kuklin®,
Hans Agren®®, Glib V. Baryshnikov22* and Wei Xu'*

ABSTRACT

Cyclo[n]carbons (C,) have sparked substantial interest among experimentalists and theoreticians
owing to their elusive geometric structures and unique aromaticity. Composed of two-coordinated
sp-hybridized carbon atoms, C,, thus forms two perpendicular conjugated 7 -electron systems, i.e.

out-of-plane and in-plane. Till now, on-surface generated cyclocarbons are either doubly aromatic or

doubly anti-aromatic, as the number of electrons within out-of-plane and in-plane 7 systems was

equal. Doping with heteroatoms allows one to create two 7 systems with different numbers of

electrons, and to tune the aromaticity. Herein, we successfully generated two heteroatom-doped
cyclocarbons, Cy,S and Cy;N, and characterized their chemical and electronic structures. Calculations
show that C;,S exhibits an out-of-plane (14 ¢) aromatic and in-plane (12 ¢) anti-aromatic character,
resulting in a total non-aromaticity. For Cy;N, the out-of-plane

(14 ¢) aromatic and in-plane (13 ¢) non-aromatic characters lead to total aromaticity. Doping with

heteroatoms may open up the field of aromaticity engineering within cyclocarbons.

Keywords: molecular carbon allotrope, cyclocarbon, doubly aromatic, heteroatom doping,

on-surface synthesis, atom manipulation

INTRODUCTION

Cyclo[n]carbons (C,), a family of molecular car-
bon allotropes, have attracted significant attention
owing to their elusive geometric structures and
unique aromaticity [1-17]. C, possesses two per-
pendicular conjugated 7 -electron systems that are
formed by the alternating triple and single bonds
(or consecutive double bonds): one is in-plane and
the other perpendicular to the molecular plane (i.e.
out-of-plane) (Fig. 1a and b). As a natural conse-
quence of their origin from sp-hybridized carbons,
all such compounds made to date have had the
same number of electrons in the two 7 systems.
Thus, they were either doubly aromatic or doubly
anti-aromatic. For example, C4 [18], Cyo [19], Cy4
[19], Cy5 [20,21], and Cy4 [22] are all doubly aro-
matic (Fig. 1c and d); Cy; [23], Cy3 [22], Cy6 [24],

and Cy [23] are all doubly anti-aromatic (Fig. le
and f).

Doping with heteroatoms opens the possibility
of breaking this parity, because heteroatoms (i.e. S,
N) have a lone pair in either the in-plane or out-
of-plane system, but not both. Thus, exchanging
a carbon atom or adding a heteroatom allows one
to create two 7 systems with different numbers
of electrons. Furthermore, it allows one to create
systems with even numbers of electrons but odd
numbers of atoms, or vice versa. Our calculations
predict that S or N heteroatom doping into cy-
clocarbons (e.g. doubly anti-aromatic Ci,) could
significantly influence its geometric and electronic
structures, and tune its aromaticity. Herein it is
shown that C;,S exhibits out-of-plane aromatic
and in-plane anti-aromatic characters, resulting
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Figure 1. Two perpendicular 7 systems of cyclocarbons and their aromaticity. (a and b) Out-of-plane and in-plane = systems of cyclocar-
bons. (c and d) Doubly aromatic cyclocarbons with magnetically induced current Jigras > 0 (Jout > 0, Jin >0). (e and f) Doubly anti-aromatic
cyclocarbons with Jigra < 0 (Jout < 0, Jin < 0). (g and h) Totally non-aromatic cyclocarbons with Jiga ~ 0 (€.9. Jout > 0, Jin < 0, and [Jou| =
|Jinl). (i and j) Totally aromatic cyclocarbons with Jigts > 0 (€.9. Jout > 0, Jin 20). The external magnetic field B is perpendicular to the ring
plane and points upward.

in a total non-aromaticity (Fig. 1g and h), which
has not been reported for any cyclocarbons so far.
For Cy;N, the out-of-plane aromatic and in-plane
non-aromatic characters lead to a total aromaticity
(Fig. 1iandj), thus achieving a reversed aromatic-
ity compared to Cy,. It is therefore of utmost inter-
est to experimentally generate such heteroatom-
doped cyclocarbons.

The concept of aromaticity was introduced by
Kekulé in 1865 [25], and nowadays, magnetic
criteria of aromaticity are most widely used for
molecular systems [16,22,26]. For the magnet-
ically induced ring current J, diatropic current
(J > 0) corresponds to aromatic character, while
paratropic current (/] < 0) corresponds to anti-
aromatic one. Mathematically, we can represent
the total magnetically induced current (Jiora1) of
the system as a sum of the out-of-plane and in-
plane currents (i.e. Jou + Jin) (cf. Fig. 1). As for
even-numbered cyclocarbons shown in Fig. 2a to
c (i.e. Cyo, Cyz, Cyy), the out-of-plane and in-plane
7 systems both contain 10 ¢ (14 ¢) for aromatic
Cyo (Cy4) (Fig. 2a and c), with Jioy = 27 nA/T
(ot = 42 nA/T) [11]. For anti-aromatic Cj,
(Fig. 2b), both out-of-plane and in-plane 7 sys-
tems contain 12 ¢, with Jiog = —38 nA/T. As
odd-numbered cyclocarbons, e.g. Cy; (Fig. 2d),
the out-of-plane and in-plane 7 systems both
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contain 13 ¢, with o = —18 nA/T, thus,
Ci3 can be assigned as a doubly anti-aromatic
cyclocarbon [22].

Herein, we focus on two heteroatom-doped cy-
clocarbons, i.e. S- and N-doped cyclocarbons. For
C1,S (Fig. 2e), calculations indicate out-of-plane
(12 ¢ (C) + 2 ¢ (S), Jour = 8 nA/T) aromatic and
in-plane (12 ¢ (C), J;, = —7 nA/T) anti-aromatic
character, resulting in a total non-aromaticity
(ot = 1 nA/T). For C;N (Fig. 2f), the out-of-
plane (12 ¢ (C) + 2 ¢ (N), Joue = 18 nA/T) aromatic
and in-plane (12 ¢ (C) + 1 ¢ (N), J, = 3 nA/T)
non-aromatic characters lead to a total aromatic-
ity (o = 21 nA/T).

RESULTS AND DISCUSSION

Experimentally, we designed and synthesized two
fully halogenated molecules (perchlorodibenzo[b,
d]thiophene, C;,SClg, and perchloro-1H-
cyclopenta[b]quinoline, C{;NCly) as the pre-
cursors for generating heteroatom-doped cyclo-
carbons, Ci,S and Cy;N, respectively. Through
scanning tunneling microscopy (STM) tip-
induced dehalogenation [27,28] and accompanied
ring-opening reactions, C;,S (cf. Fig. 3a) and C{,N
(cf. Fig. 4a) were successfully generated on the
surface.
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Figure 2. Aromaticity calculations of even- and odd-numbered cyclocarbons. (atoay, b to by, ¢ to ¢ ;) Aromaticity calculations of Cyy,
Cip, Cy4. (dy to d ) Aromaticity calculations of C3. (e to ey, f to f ;) Aromaticity calculations of Cq,S and Cy,N.

To generate C;,S, C;;SClg molecules were
introduced on the cold sample held at ~6 K. All
molecules were studied on the 1 monolayer (ML)
NaCl/Au(111) surface at 4.7 K. Atomic force mi-
croscopy (AFM) images (Fig. 3b 1, b 1) acquired
with a CO-terminated tip revealed the skeleton of
the precursor (Fig. 3b 1). To trigger dehalogena-
tion reactions, the tip was initially positioned on a
single C;,SClg molecule, and retracted by 4-6 A
from a set point (typically I = 5 pA, V= 0.3 V),
after that, ~4-4.5 V pulses were applied on the
molecule with currents on the order of a few pA.
Normally, several Cl atoms were removed, leading
to the formation of typical intermediates shown
in Fig. 3c and d and Fig. S2. In some intermedi-
ates the first-step retro-Bergman ring-opening
reaction [19,23,29-31] has occurred, leading to
the formation of a 9-membered ring containing
a S atom (Fig. 3d and Fig. S2b). Subsequent
voltage pulses can induce further dehalogenation
and accompanied second-step retro-Bergman
ring-opening reaction, leading to the formation
of intermediates, e.g. C{;SCl (Fig. 3e). AFM
imaging shows a 13-membered ring with five
carbon-carbon triple bonds and one Cl atom
attached. Further voltage pulses could induce
complete dehalogenation of intermediates (e.g.
Fig. 3e), resulting in the formation of the final
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product Cy;S (cf. the optimized structure shown
in Fig. 3f |, Figs S3 and S4a). AFM images (Fig. 3f
1, f v) reveal six characteristic bright features
corresponding to carbon-carbon triple bonds
and a pronounced contrast at the S atom site, in
consistence with AFM simulation (Fig. 3f ). In
the close tip-sample distance (Fig. S5), bright thin
lines appear between triple bonds (obviously dif-
ferent from the cumulenic line features) [18,19],
which should originate from the tip-tilting
effect [32].

Moreover, we have successfully measured the
differential conductance as a function of voltage,
dI/dV, of a Cy,S (Fig. 3f v). The dI/dV spectrum
acquired over the Ci,S ring shows a prominent
peak at ~—0.75 V. STM images (Fig. 3f vy, f vi1)
obtained at this bias voltage correspond to the PIR
state, showing characteristic lobes similar to the
ones of C,y [23]. This state could result from the
superposition of the densities of the nearly energy
degenerated highest occupied molecular orbitals
(HOMOs) (Fig. 3f vy and Fig. S6). It is consid-
ered that the peak at the PIR dominantly relates
to the out-of-plane orbitals [22]. In addition, due
to the energy broadening of the ionic resonances
on NaCl (~0.3 V) [33], nearly degenerated or-
bitals could not be resolved as separate peaks in the
dl/dV spectrum.
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Figure 3. On-surface synthesis of C1,S and its aromaticity calculations. (a) Reaction scheme for the formation
of C1,S by dehalogenation and ring-opening reactions. (b, to by, ¢, to ¢y, d | tod, e to e y) Molecu-
lar structures, atomic force microscopy (AFM) images, and Laplace-filtered AFM images of precursor and typical
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Figure 3. (Continued) intermediates. (f| to fy) Molecular structure, AFM image, AFM simulation, Laplace-filtered AFM
image with a superimposed model of product (C+,S). (f v) Scanning tunneling spectroscopy (STS) of C1,S acquired
with a CO-terminated tip. The differential conductance (d//dV) signal acquired on the C+,S shows a peak that can be
attributed to the positive ion resonance (PIR) state. (f v;) STM image at PIR (V= —0.75V, | = 2 pA). (f ) Laplace-
filtered STM image. (f ;) Superposition of the densities of the nearly energy degenerated highest occupied molecular
orbitals (HOMQOs). (g, to g ) Total, out-of-plane and in-plane ACID plots for C+,S. (h) ICSSzz plot for Cs,S. Color bar:
from —60 to 60. AFM tip offsets Az: +0.3 A, +0.24 04 —0.4A —1.0Aforb to f . Reference set points of Az:
I=5pA V=03Vforb, I=4pA V=03Vforc,toe,/=05pA V=03Vforf,. Thescalebarin(b)applies
to all experimental images. The external magnetic field is perpendicular to the ring plane and points upward.

C1;,NCly molecules [34] (Fig. 4b | to b 1) were
introduced onto the surface to generate Cj;N.
Similarly, applied voltage pulses (~4-4.5 V) can
remove one or more Cl atoms, leading to the for-
mation of typical intermediates (e.g. Fig. 4c—e).
Not only the 6-6-5 skeleton, but more impor-
tantly the larger 10- and 13-membered rings of
intermediates were revealed by AFM images, in-
dicating the occurrence of first-step and second-
step ring-opening reactions. Subsequent voltage
pulses could induce complete dehalogenation of
intermediates (e.g. Fig. 4e), resulting in the for-
mation of the final product C;;N (cf. the opti-
mized structure shown in Fig. 4f |, Figs S4b and
S7). For C;3N, the N atom site in AFM images
(Fig. 4f 1, f 1v) has a weaker contrast compared to
carbon-carbon bonds [35]. AFM images at differ-
ent tip heights (Fig. 4f ;j and Fig. S8) show two
characteristic bright features (assigned to triple
bonds) near to the N site and uniform line fea-
tures (assigned to the cumulenic moiety) within
Ci3N, in accordance with the AFM simulation
(Flg 4f111).

Moreover, the dI/dV spectrum (Fig. 4f v) ac-
quired over the C; N ring shows a prominent peak
at ~—2.25 V. STM images (Fig. 4f vy, f yi1) ob-
tained at this bias voltage correspond to the PIR
state, showing a nearly delocalized state (i.e. no ob-
vious lobes in comparison with C;,S) (Fig. 4f v
and Fig. S9). It is still challenging to measure the
negative ion resonance (NIR) of C,S and C;;N
due to the high mobility of the ring.

Calculations for anisotropy of the induced cur-
rent density (ACID) [36] were conducted to vi-
sualize the magnetically induced current of C;,S
(Fig. 3g and Fig. S10). ACID,, (Fig. 3g 1) and
ACIDy, (Fig. 3g 1) plots indicate the presence of
a diatropic current (indicated by red clockwise ar-
row) within the out-of-plane 7 system and para-
tropic current (indicated by yellow anti-clockwise
arrow) within the in-plane 7 system, leading to a
very small diatropic current in ACID,, (Fig. 3g
1. It is found that an in-plane paratropic current
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is formed by avoiding the kink at the S atom, be-
cause the S atom could not provide the lone elec-
tron pair into the conjugation circuit inside the
C1,S ring, thus only in-plane 12 electrons by 12
carbon atoms are involved in the paratropic cur-
rent. [so-chemical shielding surface (ICSSzz) [37]
plots (Fig. 3h and Fig. S11) further confirm the
presence of diatropic out-of-plane and paratropic
in-plane currents.

For ClzN, ACIDout (Flg 4g [[) and ACIDm
(Fig. 4g 1) plots indicate the presence of a large
diatropic current (indicated by red clockwise ar-
row) within the out-of-plane 7 system and very
small diatropic current within the in-plane 7 sys-
tem, leading to a diatropic current (indicated by
red clockwise arrow) in ACIDy, (Fig. 4g | and
Fig. S12). Compared with Cy,S, the N atom pro-
vides only one electron into the in-plane con-
jugation circuit of the Cy;N ring, resulting in a
137 -electron very weak aromatic system, while
the out-of-plane 14 -electron aromatic system
provides the dominant diatropic contribution to
the total current. Moreover, the ICSS,, plots only
show a diatropic contribution (Fig. 4h and Fig.
S13). The results of the aromaticity calculations
of C,S and Cy;N are in consistence with the ge-
ometries and electronic state revealed by AFM
and STM imaging (Figs 3f and 4f). Specifically,
compared with the non-aromatic C;,S, aromatic
C12N exhibits reduced bond-length alternations
and more delocalized PIR states.

CONCLUSION

In conclusion, we have successfully generated
two heteroatom S- and N-doped cyclocarbons,
ie. Cy,S and Cy;N, via the on-surface synthesis
method. The doped heteroatoms result in differ-
ent numbers of electrons within the out-of-plane
and in-plane conjugated m systems, and tune the
aromaticity. Such a strategy of introducing het-
eroatoms may open up the field of aromaticity en-
gineering within cyclocarbons.
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Figure 4. On-surface synthesis of C1,N and its aromaticity calculations. (a) Reaction scheme for the formation of C1,N
by dehalogenation and ring-opening reactions. (b to by, ¢ tocy, d tody, e to e ) Molecular structures, atomic
force microscopy (AFM) images, and Laplace-filtered AFM images of precursor and typical intermediates. (f to f )
Molecular structure, AFM image, AFM simulation, Laplace-filtered AFM image with a superimposed model of product
(C12N). (f v) Scanning tunneling spectroscopy (STS) of C1,N acquired with a CO-terminated tip. The d//dV signal
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Figure 4. (Continued) occupied molecular orbitals (HOMOs). (g, to g ) Total, out-of-plane and in-plane ACID plots
for C1,N. (h) 1CSSzz plot for C,N. Color bar: from —100 to 100. AFM tip offsets Az 0A, —1.4 A —1.4 A, —1.3 A,
—1.5Aforb tof . Reference set points of Az:/=0.5pA, V=103V forb tof,. The scale barin (b ;) applies to
all experimental images. The external magnetic field is perpendicular to the ring plane and points upward.
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