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ABSTRACT
Cyclo[ n ]carbons (Cn ) have sparked substantial interest among experimentalists and theoreticians 
owing to their elusive geometric structures and unique aromaticity. Composed of two-coordinated 
sp-hybridized carbon atoms, Cn thus forms two perpendicular conjugated π-electron systems, i.e. 
out-of-plane and in-plane. Till now, on-surface generated cyclocarbons are either doubly aromatic or 
doubly anti-aromatic, as the number of electrons within out-of-plane and in-plane π systems was 
equal. Doping with heteroatoms allows one to create two π systems with different numbers of 
electrons, and to tune the aromaticity. Herein, we successfully generated two heteroatom-doped 
cyclocarbons, C12 S and C12 N, and characterized their chemical and electronic structures. Calculations 
show that C12 S exhibits an out-of-plane (14 e ) aromatic and in-plane (12 e ) anti-aromatic character, 
resulting in a total non-aromaticity. For C12 N, the out-of-plane 
(14 e ) aromatic and in-plane (13 e ) non-aromatic characters lead to total aromaticity. Doping with 

heteroatoms may open up the field of aromaticity engineering within cyclocarbons. 

Keywords: molecular carbon allotrope, cyclocarbon, doubly aromatic, heteroatom doping, 
on-surface synthesis, atom manipulation 

I
C  

b  

o  

u  

p  

f  

(  

t  

o  

q  

a  

s  

T  

a
[  

m

and C20 [23 ] are all doubly anti-aromatic (Fig. 1 e 
and f). 

Doping with heteroatoms opens the possibility 
of breaking this parity, because heteroatoms (i.e. S, 
N) have a lone pair in either the in-plane or out- 
of-plane system, but not both. Thus, exchanging 
a carbon atom or adding a heteroatom allows one 
to create two π systems with different numbers 
of electrons. Furthermore, it allows one to create 
systems with even numbers of electrons but odd 
numbers of atoms, or vice versa. Our calculations 
predict that S or N heteroatom doping into cy- 
clocarbons (e.g. doubly anti-aromatic C12 ) could 
significantly influence its geometric and electronic 
structures, and tune its aromaticity. Herein it is 
shown that C12 S exhibits out-of-plane aromatic 
and in-plane anti-aromatic characters, resulting 
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NTRODUCTION 

yclo[ n ]carbons (Cn ), a family of molecular car-
on allotropes, have attracted significant attention
wing to their elusive geometric structures and
nique aromaticity [1 –17 ]. Cn possesses two per-
endicular conjugated π-electron systems that are
ormed by the alternating triple and single bonds
or consecutive double bonds): one is in-plane and
he other perpendicular to the molecular plane (i.e.
ut-of-plane) (Fig. 1 a and b). As a natural conse-
uence of their origin from sp-hybridized carbons,
ll such compounds made to date have had the
ame number of electrons in the two π systems.
hus, they were either doubly aromatic or doubly
nti-aromatic. For example, C6 [18 ], C10 [19 ], C14 
19 ], C18 [20 ,21 ], and C26 [22 ] are all doubly aro-

atic (Fig. 1 c and d); C12 [23 ], C13 [22 ], C16 [24 ], 
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Figure 1. Two perpendicular π systems of cyclocarbons and their aromaticity. (a and b) Out-of-plane and in-plane π systems of cyclocar- 
bons. (c and d) Doubly aromatic cyclocarbons with magnetically induced current Jtotal > 0 ( Jout > 0, Jin > 0). (e and f) Doubly anti-aromatic 
cyclocarbons with Jtotal < 0 ( Jout < 0, Jin < 0). (g and h) Totally non-aromatic cyclocarbons with Jtotal ≈ 0 (e.g. Jout > 0, Jin < 0, and | Jout | ≈
| Jin |). (i and j) Totally aromatic cyclocarbons with Jtotal > 0 (e.g. Jout > 0, Jin ≈0). The external magnetic field B is perpendicular to the ring 
plane and points upward. 
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n a total non-aromaticity (Fig. 1 g and h), which
as not been reported for any cyclocarbons so far.
or C12 N, the out-of-plane aromatic and in-plane
on-aromatic characters lead to a total aromaticity
Fig. 1 i and j), thus achieving a reversed aromatic-
ty compared to C12 . It is therefore of utmost inter-
st to experimentally generate such heteroatom-
oped cyclocarbons. 
The concept of aromaticity was introduced by

ekulé in 1865 [25 ], and nowadays, magnetic
riteria of aromaticity are most widely used for
olecular systems [16 ,22 ,26 ]. For the magnet-

cally induced ring current J , diatropic current
 J > 0) corresponds to aromatic character, while
aratropic current ( J < 0) corresponds to anti-
romatic one. Mathematically, we can represent
he total magnetically induced current ( Jtotal ) of
he system as a sum of the out-of-plane and in-
lane currents (i.e. Jout + Jin ) (cf. Fig. 1 ). As for
ven-numbered cyclocarbons shown in Fig. 2 a to
 (i.e. C10 , C12 , C14 ), the out-of-plane and in-plane
systems both contain 10 e (14 e ) for aromatic

10 (C14 ) (Fig. 2 a and c), with Jtotal = 27 nA/T
 Jtotal = 42 nA/T) [11 ]. For anti-aromatic C12 
Fig. 2 b), both out-of-plane and in-plane π sys-
ems contain 12 e , with Jtotal = −38 nA/T. As
dd-numbered cyclocarbons, e.g. C13 (Fig. 2 d),
he out-of-plane and in-plane π systems both
Page 2 of 8
contain 13 e , with Jtotal = −18 nA/T, thus, 
C13 can be assigned as a doubly anti-aromatic 
cyclocarbon [22 ]. 

Herein, we focus on two heteroatom-doped cy- 
clocarbons, i.e. S- and N-doped cyclocarbons. For 
C12 S (Fig. 2 e), calculations indicate out-of-plane 
(12 e (C) + 2 e (S), Jout = 8 nA/T) aromatic and
in-plane (12 e (C), Jin = −7 nA/T) anti-aromatic 
character, resulting in a total non-aromaticity 
( Jtotal = 1 nA/T). For C12 N (Fig. 2 f), the out-of- 
plane (12 e (C) + 2 e (N), Jout = 18 nA/T) aromatic
and in-plane (12 e (C) + 1 e (N), Jin = 3 nA/T)
non-aromatic characters lead to a total aromatic- 
ity ( Jtotal = 21 nA/T). 

RESULTS AND DISCUSSION 

Experimentally, we designed and synthesized two 
fully halogenated molecules (perchlorodibenzo[ b , 
d ]thiophene, C12 SCl8 , and perchloro-1H- 
cyclopenta[ b ]quinoline, C12 NCl9 ) as the pre- 
cursors for generating heteroatom-doped cyclo- 
carbons, C12 S and C12 N, respectively. Through 

scanning tunneling microscopy (STM) tip- 
induced dehalogenation [27 ,28 ] and accompanied 
ring-opening reactions, C12 S (cf. Fig. 3 a) and C12 N 

(cf. Fig. 4 a) were successfully generated on the 
surface. 
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Figure 2. Aromaticity calculations of even- and odd-numbered cyclocarbons. (a I to a III , b I to b III , c I to c III ) Aromaticity calculations of C10 , 
C12 , C14 . (d I to d III ) Aromaticity calculations of C13 . (e I to e III , f I to f III ) Aromaticity calculations of C12 S and C12 N. 

 

i  

m  

N  

c  

w  

t  

t  

s
f  

a  

m  

N  

t  

i  

a  

r  

t  

a  

v  

a  

r  

o  

i  

c  

a  

c  

F  

 

 

 

 

 

 

To generate C12 S, C12 SCl8 molecules were
ntroduced on the cold sample held at ∼6 K. All
olecules were studied on the 1 monolayer (ML)
aCl/Au(111) surface at 4.7 K. Atomic force mi-
roscopy (AFM) images (Fig. 3 b II , b III ) acquired
ith a CO-terminated tip revealed the skeleton of

he precursor (Fig. 3 b I ). To trigger dehalogena-
ion reactions, the tip was initially positioned on a
ingle C12 SCl8 molecule, and retracted by 4–6 Å
rom a set point (typically I = 5 pA, V = 0.3 V),
fter that, ∼4–4.5 V pulses were applied on the
olecule with currents on the order of a few pA.
ormally, several Cl atoms were removed, leading

o the formation of typical intermediates shown
n Fig. 3 c and d and Fig. S2. In some intermedi-
tes the first-step retro-Bergman ring-opening
eaction [19 ,23 ,29 –31 ] has occurred, leading to
he formation of a 9-membered ring containing
 S atom (Fig. 3 d and Fig. S2b). Subsequent
oltage pulses can induce further dehalogenation
nd accompanied second-step retro-Bergman
ing-opening reaction, leading to the formation
f intermediates, e.g. C12 SCl (Fig. 3 e). AFM
maging shows a 13-membered ring with five
arbon-carbon triple bonds and one Cl atom
ttached. Further voltage pulses could induce
omplete dehalogenation of intermediates (e.g.
ig. 3 e), resulting in the formation of the final
Page 3 of 8
product C12 S (cf. the optimized structure shown 

in Fig. 3 f I , Figs S3 and S4a). AFM images (Fig. 3 f
II , f IV 

) reveal six characteristic bright features 
corresponding to carbon-carbon triple bonds 
and a pronounced contrast at the S atom site, in
consistence with AFM simulation (Fig. 3 f III ). In 

the close tip-sample distance ( Fig. S5), bright thin 

lines appear between triple bonds (obviously dif- 
ferent from the cumulenic line features) [18 ,19 ], 
which should originate from the tip-tilting 
effect [32 ]. 

Moreover, we have successfully measured the 
differential conductance as a function of voltage, 
d I /d V , of a C12 S (Fig. 3 f V 

). The d I /d V spectrum
acquired over the C12 S ring shows a prominent 
peak at ∼−0.75 V. STM images (Fig. 3 f VI , f VII )
obtained at this bias voltage correspond to the PIR 

state, showing characteristic lobes similar to the 
ones of C20 [23 ]. This state could result from the
superposition of the densities of the nearly energy 
degenerated highest occupied molecular orbitals 
(HOMOs) (Fig. 3 f VIII and Fig. S6). It is consid- 
ered that the peak at the PIR dominantly relates 
to the out-of-plane orbitals [22 ]. In addition, due 
to the energy broadening of the ionic resonances 
on NaCl ( ∼0.3 V) [33 ], nearly degenerated or-
bitals could not be resolved as separate peaks in the 
d I /d V spectrum. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf472#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf472#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf472#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf472#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf472#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf472#supplementary-data
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lar structures, atomic force microscopy (AFM) images, and Laplace-filtered AFM images of precursor and typical 
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Figure 3. ( Continued ) intermediates. (f I to f IV ) Molecular structure, AFM image, AFM simulation, Laplace-filtered AFM 

image with a superimposed model of product (C12 S). (f V ) Scanning tunneling spectroscopy (STS) of C12 S acquired 
with a CO-terminated tip. The differential conductance (d I /d V ) signal acquired on the C12 S shows a peak that can be 
attributed to the positive ion resonance (PIR) state. (f VI ) STM image at PIR ( V = −0.75 V, I = 2 pA). (f VII ) Laplace- 
filtered STM image. (f VIII ) Superposition of the densities of the nearly energy degenerated highest occupied molecular 
orbitals (HOMOs). (g I to g III ) Total, out-of-plane and in-plane ACID plots for C12 S. (h) ICSSzz plot for C12 S. Color bar: 
from −60 to 60. AFM tip offsets �z : + 0.3 Å, + 0.2 Å, 0 Å, −0.4 Å, −1.0 Å for b II to f II . Reference set points of �z : 
I = 5 pA, V = 0.3 V for b II , I = 4 pA, V = 0.3 V for c II to e II , I = 0.5 pA, V = 0.3 V for f II . The scale bar in (b II ) applies 
to all experimental images. The external magnetic field is perpendicular to the ring plane and points upward. 
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C12 NCl9 molecules [34 ] (Fig. 4 b I to b III ) were
ntroduced onto the surface to generate C12 N.
imilarly, applied voltage pulses ( ∼4–4.5 V) can
emove one or more Cl atoms, leading to the for-
ation of typical intermediates (e.g. Fig. 4 c–e).
ot only the 6–6–5 skeleton, but more impor-

antly the larger 10- and 13-membered rings of
ntermediates were revealed by AFM images, in-
icating the occurrence of first-step and second-
tep ring-opening reactions. Subsequent voltage
ulses could induce complete dehalogenation of
ntermediates (e.g. Fig. 4 e), resulting in the for-
ation of the final product C12 N (cf. the opti-
ized structure shown in Fig. 4 f I , Figs S4b and
7). For C12 N, the N atom site in AFM images
Fig. 4 f II , f IV 

) has a weaker contrast compared to
arbon-carbon bonds [35 ]. AFM images at differ-
nt tip heights (Fig. 4 f II and Fig. S8) show two
haracteristic bright features (assigned to triple
onds) near to the N site and uniform line fea-
ures (assigned to the cumulenic moiety) within
12 N, in accordance with the AFM simulation
Fig. 4 f III ). 

Moreover, the d I /d V spectrum (Fig. 4 f V 

) ac-
uired over the C12 N ring shows a prominent peak
t ∼−2.25 V. STM images (Fig. 4 f VI , f VII ) ob-
ained at this bias voltage correspond to the PIR
tate, showing a nearly delocalized state (i.e. no ob-
ious lobes in comparison with C12 S) (Fig. 4 f VIII 
nd Fig. S9). It is still challenging to measure the
egative ion resonance (NIR) of C12 S and C12 N
ue to the high mobility of the ring. 
Calculations for anisotropy of the induced cur-

ent density (ACID) [36 ] were conducted to vi-
ualize the magnetically induced current of C12 S
Fig. 3 g and Fig. S10). ACIDout (Fig. 3 g II ) and
CIDin (Fig. 3 g III ) plots indicate the presence of
 diatropic current (indicated by red clockwise ar-
ow) within the out-of-plane π system and para-
ropic current (indicated by yellow anti-clockwise
rrow) within the in-plane π system, leading to a
ery small diatropic current in ACIDtotal (Fig. 3 g
 

). It is found that an in-plane paratropic current
Page 5 of 8
is formed by avoiding the kink at the S atom, be-
cause the S atom could not provide the lone elec-
tron pair into the conjugation circuit inside the 
C12 S ring, thus only in-plane 12 electrons by 12 
carbon atoms are involved in the paratropic cur- 
rent. Iso-chemical shielding surface (ICSSzz) [37 ] 
plots (Fig. 3 h and Fig. S11) further confirm the 
presence of diatropic out-of-plane and paratropic 
in-plane currents. 

For C12 N, ACIDout (Fig. 4 g II ) and ACIDin 
(Fig. 4 g III ) plots indicate the presence of a large
diatropic current (indicated by red clockwise ar- 
row) within the out-of-plane π system and very 
small diatropic current within the in-plane π sys- 
tem, leading to a diatropic current (indicated by 
red clockwise arrow) in ACIDtotal (Fig. 4 g I and 
Fig. S12). Compared with C12 S, the N atom pro- 
vides only one electron into the in-plane con- 
jugation circuit of the C12 N ring, resulting in a 
13 π-electron very weak aromatic system, while 
the out-of-plane 14 π-electron aromatic system 

provides the dominant diatropic contribution to 
the total current. Moreover, the ICSSzz plots only 
show a diatropic contribution (Fig. 4 h and Fig.
S13). The results of the aromaticity calculations 
of C12 S and C12 N are in consistence with the ge-
ometries and electronic state revealed by AFM 

and STM imaging (Figs 3 f and 4 f). Specifically,
compared with the non-aromatic C12 S, aromatic 
C12 N exhibits reduced bond-length alternations 
and more delocalized PIR states. 

CONCLUSION 

In conclusion, we have successfully generated 
two heteroatom S- and N-doped cyclocarbons, 
i.e. C12 S and C12 N, via the on-surface synthesis 
method. The doped heteroatoms result in differ- 
ent numbers of electrons within the out-of-plane 
and in-plane conjugated π systems, and tune the 
aromaticity. Such a strategy of introducing het- 
eroatoms may open up the field of aromaticity en- 
gineering within cyclocarbons. 

https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf472#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf472#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf472#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf472#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf472#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf472#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf472#supplementary-data
https://academic.oup.com/nsr/article-lookup/doi/10.1093/nsr/nwaf472#supplementary-data
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force microscopy (AFM) images, and Laplace-filtered AFM images of precursor and typical intermediates. (f I to f IV ) 
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Figure 4. ( Continued ) occupied molecular orbitals (HOMOs). (g I to g III ) Total, out-of-plane and in-plane ACID plots 
for C12 N. (h) ICSSzz plot for C12 N. Color bar: from −100 to 100. AFM tip offsets �z : 0 Å, −1.4 Å, −1.4 Å, −1.3 Å, 
−1.5 Å for b II to f II . Reference set points of �z : I = 0.5 pA, V = 0.3 V for b II to f II . The scale bar in (b II ) applies to 
all experimental images. The external magnetic field is perpendicular to the ring plane and points upward. 
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UPPLEMENTARY DATA 

upplementary data are available at NSR online. 
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