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ABSTRACT: The structural transformation from symmetric cumulene to broken-symmetry polyyne within a one-dimensional (1-
D) atomic carbon chain is a signature of Peierls distortion. Direct observation of such a structural transformation with single-bond
resolution is, however, still challenging. Herein, we design a molecule with a cumulene moiety (Br2CCCCBr2) and employ
STM tip manipulation to achieve the molecular skeleton rearrangement from a cumulene to a diyne moiety (Br−CC−CC−Br).
Furthermore, by an on-surface reaction strategy, thermally induced entire debromination (:CCCC:) leads to the formation
of a 1-D organometallic polyyne (−CC−CC−Au−) with a semiconducting characteristic, which implies that a Peierls-like
transition may occur in a rationally designed molecular system with limited length.

Carbyne, a linear carbon allotrope, is considered to be a 1-
D crystal comprising carbon atoms in series,1−3 in which

two configurations have been proposed for the carbon
skeleton, that is, cumulene with consecutive double bonds
(CC)n and polyyne with alternating single and triple
bonds (−CC−)n.4 Moreover, it is known that the structural
transformation from cumulene to polyyne and the concomitant
change of electronic properties is in relation to a Peierls
transition.5,6 Theoretical studies have predicted that Peierls
distortion within carbyne increases under strain, in which the
polyyne structure becomes dominant.7−9 Experimentally, 1-D
carbon chains have been mainly obtained by top-down
approaches from carbon-based materials, and strain-induced
change of electronic properties has been investigated.10−13 By
measuring the interatomic distances using a transmission
electron microscope, Suenaga et al. revealed the atomic
structures of individual short carbon chains.14 On the other
hand, to our knowledge, carbon chains prefer to form cyclic
rings and other more complicated structures rather than a
linear conformation for n > 10 (n is the number of carbon
atoms).15 Thus, real-space observation of the structural
transformation from cumulene to polyyne within 1-D carbon
nanostructures at the single-bond level is still challenging.
On-surface synthesis as a bottom-up strategy holds great

potential for atomically precise fabrication of carbon
nanostructures.16−19 With the assistance of noncontact atomic
force microscopy (nc-AFM), the bond configurations could be
unambiguously distinguished.20−25 Scanning tunneling micros-
copy (STM) manipulation has proven to be a powerful tool in
triggering on-surface reactions.26−29 In this study, we design
the 1,1,4,4-tetrabromo-1,2,3-butatriene molecule (Br2CC
CCBr2, shortened as C4Br4) as a model system (Figure 1a),
in which the carbon skeleton could be treated as the
elementary cumulene moiety. Herein, by the combination of

STM manipulation/measurements, nc-AFM imaging, and
density functional theory (DFT) calculations, we demonstrate
that (i) by breaking two C−Br bonds of the C4Br4 molecule via
atomic manipulation, we directly observe the carbon skeleton
rearrangement from the cumulene moiety to the diyne one
(1,4-dibromo-1,3-butadiyne, Br−CC−CC−Br, shortened
as C4Br2) (cf. Figure 1a). DFT calculations reveal that such a
skeleton rearrangement is a spontaneous process once two C−
Br bonds are cleaved from both terminal carbon atoms of the
molecule. (ii) Furthermore, entire debromination of C4Br4
molecules via thermal treatment results in the formation of an
organometallic polyyne, i.e., Au-carbyne, which is experimen-
tally observed to be composed of diyne moieties (−CC−
CC−Au−) (cf. Figure 3a). Polymetallaynes show unique
characteristics including electrical semiconductivity, nonlinear
optical properties, and chemosensing capability.19,30−34 (iii)
The scanning tunneling spectroscopy (STS) of an organo-
metallic polyyne exhibits a semiconducting feature in
accordance with theoretical calculations.
Upon the deposition of C4Br4 molecules on Au(111) at

relatively low temperatures (∼120 K), a self-assembled island
structure is formed as shown in Figure 1b, in which the
individual C4Br4 molecules are highlighted by dog-bone-
shaped contours. The close-up STM image together with the
DFT-calculated structural model (Figure 1c) allows identifying
the intermolecular halogen bonds. The cumulene skeleton of
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the molecule appears as a homogeneous line with little internal
contrast25 (as indicated by the red arrow) in the nc-AFM
image (Figure 1d). To explore the possibility of carbon
skeleton rearrangement from a cumulene to a diyne moiety, an
STM manipulation is performed at 4.3 K. To do so, the STM
tip is positioned at the site marked “X” in Figure 1b, and then a
voltage pulse (2 V) was applied. The subsequently obtained
STM image (Figure 1e) shows a local variation (highlighted by
a green rectangle) in comparison with the ordered self-
assembled structure (Figure 1b). It is clearly seen that two
molecules within that region have changed in shape from dog
bone to rod, indicating that the molecules undergo a chemical
transformation. From the close-up STM image together with
the overlaid DFT model (Figure 1f), we attribute the rod-
shape molecules to C4Br2, i.e., a partially debrominated
product of C4Br4. The corresponding nc-AFM image (Figure

1g) shows that the carbon skeleton of the C4Br2 molecule is no
longer uniform; instead, two separate characteristic protrusions
(as indicated by two blue arrows) that were previously known
and assigned to two adjacent C−C triple bonds28,35,36 are
unambiguously imaged. We perform electron density calcu-
lations to further understand the observed image contrasts of
the cumulene and diyne structures, as shown in Figure S1. The
experimental and theoretical values of the bond length for the
cumulene moiety of C4Br4 are shown in Figure 1i and j, as well
as bromine-to-bromine distance for C4Br2 in Figure 1l and m.
A good agreement is achieved by comparing the measured and
calculated values (cf. Table S1). Based on the above
information, we conclude that breaking two C−Br bonds
results in the transformation from cumulene to diyne. Another
data set of tip-induced formation of C4Br2 molecules is shown
in Figure S2 to demonstrate the reproducibility.
To unravel the underlying mechanism of the skeleton

rearrangement in the above-mentioned reaction, we then

Figure 1. (a) Schematic illustration showing molecular structural
transformation from the cumulene to a diyne moiety. (b) STM image
of the self-assembled structure of C4Br4 molecules on Au(111). The
individual C4Br4 molecules are highlighted by dog-bone-shaped
contours. (c) Close-up STM image of the C4Br4 self-assembled
structure overlaid with the DFT-relaxed model. The dark blue dotted
lines represent the halogen bonds. (d) Laplace-filtered nc-AFM image
allowing the identification of the cumulene skeleton of the C4Br4
molecule as indicated by a red arrow. (e) STM image of the same area
in (b) after applying STM manipulation. (f, g) Close-up STM image
and the Laplace-filtered nc-AFM image of the resulting C4Br2
molecules overlaid with the DFT-relaxed model and the chemical
structure, respectively. (h−j) High-resolution STM image, corre-
sponding nc-AFM image, and DFT-optimized model of the C4Br4
molecule. The experimental and theoretical values of the bond lengths
of three consecutive double bonds are shown in (i) and (j),
respectively. (k−m) High-resolution STM image, corresponding nc-
AFM image, and DFT-optimized model of the C4Br2 product. The
experimental and theoretical values of bromine-to-bromine distances
are shown in (l) and (m), respectively. Scale bars: 2 Å. Scanning
parameters: Vt = −1 V, It = 0.2 nA.

Figure 2. DFT-calculated reaction pathway for the successive C−Br
bond activations from different carbon atoms of the C4Br4 molecule
accompanied by carbon skeleton rearrangement from a cumulene to a
diyne moiety on Au(111). The structural models of the initial (IS),
transition (TS), intermediate (Int), and final states (FS) along the
pathway are also shown.

Figure 3. (a) Schematic illustration showing the polymerization from
a cumulene moiety to an organometallic polyyne. (b) STM image
showing the formation of organometallic chains on the Au(111)
surface by heating up the sample precovered with C4Br4 molecules to
300 K. (c) Equally scaled high-resolution STM image and the
corresponding DFT-optimized model of a single organometallic
polyyne on Au(111). (d) Close-up STM images and the Laplace-
filtered nc-AFM images of the single chain, double chain, and triple
chain, respectively, in which the diyne moieties within these chains are
identified from the nc-AFM images as indicated by blue arrows. Scale
bars: 3.8 Å. Scanning parameters: Vt = −1 V, It = 0.2 nA.
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perform DFT calculations to explore the possible pathway
from the cumulene skeleton of C4Br4 to the diyne one of C4Br2
on the Au(111) surface, as shown in Figure 2. The energy
barrier for cleaving the first C−Br bond is determined to be
0.51 eV, and the second debromination is energetically more
favorable from the other terminal carbon atom (0.12 eV) than
from the same one (0.48 eV) (cf. Figure S3), respectively.
More importantly, it is evidenced that the subsequent carbon
skeleton rearrangement is spontaneous. A step further, if four
C−Br bonds are entirely cleaved from the C4Br4 molecule
(Figure S4a), interestingly, the intermediate (C4 species)
strongly interacts with the substrate by pulling out two Au
atoms and forms an organometallic structure (Figure S4b),
while the chemical structure (i.e., AuCCCCAu or
Au−CC−CC−Au) of such a carbon species remains
elusive.37 It thus would be of general interest to experimentally
reveal the precise chemical bonding configuration of the
carbon skeleton involving C4 in an extended 1-D system.
It was previously demonstrated by Xu and co-workers that

both C−Br bonds of the alkenyl gem-dibromide group (i.e., 
CBr2) could be activated at room temperature on the Au(111)
surface.25 Therefore, to obtain the entirely debrominated
intermediate of C4Br4, a thermal treatment (by heating the
sample precovered with C4Br4 molecules to 300 K) is
performed, which leads to the formation of ribbon structures
composed of individual molecular chains as shown in Figure
3a,b. Interestingly, such a chain structure resembles the
previously reported Cu-incorporated organometallic carbon
chains (i.e., Cu-carbyne).19 From the high-resolution STM
image and DFT-relaxed structural model (Figure 3c), we then
assign the formed chain structure to Au-incorporated organo-
metallic carbon chains (i.e., Au-carbyne), and the bright
protrusions within the chain are in relation to the electronic
density of states of Au atoms. As also known, debrominated
alkenyl gem-dibromide groups (CBr2) directly coupled into
the cumulene structure on the Au(111) surface,25 while
debrominated alkynyl bromide groups (CBr) form an
organometallic structure.33 Therefore, we suggest that upon
entire debromination, the cumulene moiety transforms to the
diyne one and then polymerizes into organometallic carbon
chains (i.e., organometallic polyyne), which is experimentally
confirmed by the nc-AFM images (Figure 3d), where two
discrete characteristic protrusions corresponding to two
adjacent C−C triple bonds are resolved.28,35,36 In addition, a
good agreement is also achieved by comparing the
experimentally measured bond lengths and the corresponding
theoretical values of the organometallic polyyne chain (cf.
Table S1). The formation energy of the organometallic chain
with respect to the C4Br2 molecules are studied with DFT
(Figure S5), revealing that the formation of organometallic
polyyne from C4Br2 molecules and Au adatoms is an
exothermic process.
The dI/dV spectra taken at locations of the Au atom and the

diyne moiety of an organometallic polyyne are compared to
that acquired on the metal substrate. And we assign the
increased electronic density at −1.5 and 0.5 V to the valence
band maximum (VBM) and conduction band minimum
(CBM), respectively, which corresponds to a semiconducting
feature (Figure 4a). The subtracted spectra (Figure S6) with
detailed discussions are shown in the SI. In addition, the dI/dV
line mapping recorded across a single chain, as indicated by the
arrow marked in the STM image (Figure 4b, upper panel),
reveals that the two electronic states (Figure 4b, lower panel)

are concentrated on the chain. We then conducted DFT
calculations on the band structure and DOS to study the
intrinsic electronic properties of the free-standing organo-
metallic polyyne as shown in Figure 4c, and a semiconducting
characteristic with a bandgap about ∼2.6 eV is obtained. Both
the experimental and simulated dI/dV maps along the chain
acquired at the CBM and VBM indicate that the electronic
density of states are more localized in the proximity of Au
atoms (Figure 4d).
We have demonstrated the chemical bond-scission-induced

carbon skeleton rearrangement from a cumulene moiety to a
diyne one. Although Peierls transition is in principle applied to
a truly extended polyyne chain,6 the present result shows that
the formation of a semiconducting organometallic polyyne
with alternating single and triple C−C bonds is achieved,
implying that Peierls transition may occur in a rationally
designed molecular system with limited length. Moreover,
surface-supported metal-incorporated carbon chains would
render opportunities for further experimental studies on the
characterization of structural and electronic properties with
respect to the intrinsic 1-D atomic carbon chain.
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Experimental details, additional STM image (PDF)

Figure 4. (a) dI/dV spectra taken on the location of the Au atom
(blue curve) and the diyne moiety (red curve) of a single
organometallic polyyne, and the corresponding positions are marked
by blue and red crosses, respectively, as shown in the inset STM
image. The gray curve (taken on the position marked by the gray
cross) was recorded on the Au(111) surface showing Shockley states
at ∼−0.4 V. (b) dI/dV line map taken across a single organometallic
polyyne as indicated by the arrow marked in the STM image. The two
dashed lines indicate the CBM and VBM, respectively. (c) Calculated
band structure (left, red) and DOS (right, blue) of a free-standing
organometallic polyyne. The valence band maximum is set at 0 eV.
The real-space vector is along the backbone of the chain. (d)
Experimental dI/dV maps and the corresponding simulated dI/dV
maps at 0.5 V and −1.5 V for the organometallic polyyne. Scale bars:
1 nm.
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M.; Xu, W. On-Surface Formation of Cumulene by Dehalogenative
Homocoupling of Alkenyl gem-Dibromides. Angew. Chem., Int. Ed.
2017, 56, 12165−12169.
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